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ABSTRACT
We study a game theoretic model of standardized testing for college

admissions. Students are of two types; High and Low. There is a

college that would like to admit the High type students. Students

take a potentially costly standardized exam which provides a noisy

signal of their type.

The students come from two populations, which are identical

in talent (i.e. the type distribution is the same), but differ in their

access to resources: the higher resourced population can at their

option take the exam multiple times, whereas the lower resourced

population can only take the exam once. We study two models of

score reporting, which capture existing policies used by colleges.

The first policy (sometimes known as “super-scoring”) allows stu-

dents to report themax of the scores they achieve. The other policy

requires that all scores be reported.

We find in our model that requiring that all scores be reported

results in superior outcomes in equilibrium, both from the perspec-

tive of the college (the admissions rule is more accurate), and from

the perspective of equity across populations: a student’s probability

of admission is independent of their population, conditional on

their type. In particular, the false positive rates and false negative

rates are identical in this setting, across the highly and poorly re-

sourced student populations. This is the case despite the fact that

the more highly resourced students can—at their option—either

report a more accurate signal of their type, or pool with the lower

resourced population under this policy. This represents an unusual

situation in the algorithmic fairness literature where the goals of

accuracy and equity are in alignment, and do not need to be traded

off against one another.
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1 INTRODUCTION
Worldwide, standardized tests are an essential input to University

admission decisions. Their use is considered to benefit both institu-

tions and individuals. Institutions want to avoid the false-positive

error of selection so as not to admit those who will not thrive. False-

negative errors (the rejection of would-be successes) deprive the

institution, and hence society, of potential college graduates. They

are also a harm to individual students, as they prevent a potentially

successful student from attending University.

Given the importance of standardized tests, there is an extensive

literature on the fairness of such tests and how to compensate for

possible unfairness. Thorndike, for example, pointed out in 1971

that the distribution of false negatives between groups and not

just their absolute numbers matters. His proposed remedy involved

setting two selection cutoffs with a lower cutoff for the members

of the minority group [19].

In this paper we consider a source of unfairness that arises from

the fact that some—but not all—applicants have the resources to

take the test a number of times and have discretion over what

scores they submit. Until 2008, the custom was for US Universities

to ask for scores from all attempts on either the SAT or the ACT and

these were provided by the relevant testing companies. In 2008, the

SAT introduced the superscoring option.
1
Applicants can pick and

choose which of their SAT scores to submit. In 2020, the ACT went

a step further and allowed students to retake individual sections

of a test (a test has multiple sections, e.g., mathematics, verbal,

1
https://www.nytimes.com/2008/12/31/education/31sat.html

https://doi.org/10.1145/3531146.3533121
https://doi.org/10.1145/3531146.3533121
https://www.nytimes.com/2008/12/31/education/31sat.html
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writing, etc.). Furthermore, it will include the superscore—i.e., the

component-wise max—in all ACT score reports.
2

In turn, many Universities have switched from a policy of re-

quiring all scores to be reported.
3
At present Universities employ

one of the following policies:

(1) Require all scores: applicants must submit all test scores.

(2) Score choice: the applicant is free to choose which scores to

submit. Some universities encourage students to submit all

scores but commit to using only the highest reported scores,

which is equivalent.

Georgetown University is one of the shrinking number of Uni-

versities that requires all scores. In 2019, their Dean of admissions

said
4
:

“If you take the SAT five times and score 600-650 on

verbal on four of them but 750 on one, that is useful

information compared with allowing the student to

cherry-pick their best score.”

Superscoring raises a fairness concern in that not all groups

retest at the same rates. The ACT, for example, reports that the

retest rates for Hispanic students is 34%, compared to 49% for both

White and Asian students. Students whose parents did not attend

college had a retest rate of 36% compared to 62% for students whose

highest parental education level exceeded a bachelor’s degree.
5

This is in spite of subsidies offered to low income students by the

testing companies.
6

In this paper, we ask what happens if applicants differ in their

ability to access signals like standardized tests. In particular how

are false negative and false positive rates affected in different popu-

lations, and how can policy improve these effects?

1.1 Our Model and Results
To answer this question we propose a simple model in which stu-

dents are of two types, High (H ) or Low (L). The college receives
a payoff of 1 for admitting a type H student and -1 for admitting

a type L. Changing these payoffs only affects the magnitudes of

various cutoffs but not the qualitative conclusions. The probability

that a student is of type H is p < 0.5, capturing the idea that high

types are scarce (if p > 0.5, the College would accept all students

even if there was no testing). Students know their type, but cannot

credibly convey it except through a test. The test generates a score

s ∈ {A,B}, where A stands for above the bar and B for below the

bar. The probability that an H type student generates the score A
is α > 0.5. Similarly, an L type student generates a score of B with

probability α .
Students belong to one of two categories. Category 1 students

are only able to take the test once. The proportion of category 1

students is ϕ. Category 2 students, however, can (in our baseline

2
https://www.act.org/content/act/en/new-act-options/superscoring.html

3
In part this is driven by competitive pressure. See https://youtu.be/yFm5fAt0zIo for

discussion between Louisiana State University’s VP for enrollment management and

the University’s Board of Supervisors held on December 05, 2019.

4
https://www.insidehighered.com/admissions/views/2019/12/02/should-colleges-

require-students-submit-every-sat-and-act-they-take

5
https://www.act.org/content/dam/act/unsecured/documents/R1774-superscoring-

subgroup-2019-07.pdf?_ga=2.200218796.349081470.1575775334-387505566.

1575775334

6
For a more detailed analysis see https://www.act.org/content/dam/act/unsecured/

documents/5195-Multiple-Testers.pdf.

model) take the test up to twice.
7
In Section 5 we extend our results

to the case in which category 2 students can take the test up to k
times, for an arbitrary k > 1. This reflects the idea that students

differ in their ability to access multiple signals. We might imagine,

for example, that “Category 2” students come from a wealthier

demographic. We emphasize that students in Category 2 can make

their testing decisions adaptively after observing the outcomes of

their previous tests. So, for example, a student could decide to take

the test a second time if their first score was a B, but to decline

to retest if their first score was an A. In our extended model in

Section 5, students can make adaptive decisions about whether to

take another test as a function of the entire transcript of their test

taking thus far.

In our model, neither p nor α depend on what category a student

belongs to. Hence, Category 1 and Category 2 students are ex-ante

identical and the test itself is fair
8
—the only distinction between

populations is the resources that they have available to be able to

take the test twice (or not).

Scores on the test are submitted to a college, which decides

whether to accept or reject a student based on the scores submitted.

We consider two score reporting policies. The first requires that

students report a single score. Hence, Category 2 students can take

the test multiple times and report their best score. We call this

policy “Report Max” and it is akin to super scoring. The second

policy requires students to report all scores. We call this “Report

All”. The College can observe the reported test scores, but cannot
observe the category that the student comes from. Thus, under

“Report Max”, the College has no information at all about whether

particular students come from Category 1 or Category 2. Under

“Report All”, if the College is sent a single test score, this does not

determine the category that a student belongs to — but if it receives

multiple test scores, it knows the student must be from Category 2.

The two policies affect the incentives of Category 2 students only.

Under “Report Max”, it is intuitive that Category 2 students will

take the test as many times as possible and report their best score.

Under “Report All”, the trade-offs are more complicated. Category 2

typeH students, for example, who initially score anAmight choose

to take the test a second time to separate themselves from Category

2 type L students. Category 2 type L students who score an A on

their first attempt face a choice. Stop and mimic Category 1 type H
students or take the test a second time to mimic Category 2 type H
students (risking that their 2nd score might be a B). These actions
will affect the beliefs that the College forms given the reported

scores, and therefore its admissions policy.

In certain parameter regimes, both policies admit trivial equilib-

ria of the form everyone is rejected (when p is sufficiently small) or

everyone is accepted (when p is sufficiently large). So, we restrict

attention to non-trivial pure strategy equilibria only. These occur

for values of p ∈ [p̂, 0.5) for some cut-off p̂.
For p ∈ [p̂, 0.5) there is a unique non-trivial pure strategy equilib-

rium under “Report Max”. Category 2 students take the test twice

7
This is the recommendation of a number of College coaching services, determined by

entering the following query into a search engine: “How many times should I take the

SAT?”.

8
We want to emphasize that while several sources of potential unfairness of standard-

ized tests have been identified in the literature, we focus exclusively on unfairness

arising from the choice of reporting policy.

https://www.act.org/content/act/en/new-act-options/superscoring.html
 https://youtu.be/yFm5fAt0zIo
https://www.insidehighered.com/admissions/views/2019/12/02/should-colleges-require-students-submit-every-sat-and-act-they-take
https://www.insidehighered.com/admissions/views/2019/12/02/should-colleges-require-students-submit-every-sat-and-act-they-take
https://www.act.org/content/dam/act/unsecured/documents/R1774-superscoring-subgroup-2019-07.pdf?_ga=2.200218796.349081470.1575775334-387505566.1575775334
https://www.act.org/content/dam/act/unsecured/documents/R1774-superscoring-subgroup-2019-07.pdf?_ga=2.200218796.349081470.1575775334-387505566.1575775334
https://www.act.org/content/dam/act/unsecured/documents/R1774-superscoring-subgroup-2019-07.pdf?_ga=2.200218796.349081470.1575775334-387505566.1575775334
https://www.act.org/content/dam/act/unsecured/documents/5195-Multiple-Testers.pdf
https://www.act.org/content/dam/act/unsecured/documents/5195-Multiple-Testers.pdf
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if their first score is B, and report their best score. The College

accepts any student who reports an A score and rejects all others.

The effect is that Category 2 students have a different (better) signal

distribution at their disposal, and hence the admissions statistics

are biased in favor of Category 2 students, with lower false negative

rates, and higher false positive rates. In other words, both low and

high type students from Category 2 are more likely to be offered

admissions compared to their Category 1 counterparts.

Under “Report All", students must report all test scores, and the

equilibrium outcomes are not obvious. Category 2 students appear

to continue to have an advantage; they no longer have access to a

signal distribution that is clearly “better” — but they have access to a

more informative signal distribution, which results from taking the

test multiple times and reporting all outcomes. One might expect

high types to take advantage of this. Besides, they also now have

the strategic option of attempting to pool with Category 1 students;

one might expect low types to take advantage of this. What we

show, however, is that for p ∈ [p̂, 0.5) there is a unique equilibrium
outcome where Category 2 students have no advantage because

the College accepts any student whose first (or only) score is A,
and rejects those whose first (or only) score is B. The Category 2

students might take the test either once or twice — but only the

first score matters. This makes the equilibrium outcome entirely

symmetric for both Category 1 and Category 2 students (since only

a single score is relevant for admissions, for both types). Hence,

“Report All” is superior in our model to “Report Max” from the

perspective of equity: the false positive and false negative rates are

equal across both categories of students. In other words, a student’s

probability of admissions, conditional on her type, is independent of

her category. The positive predictive value of “Report All” exceeds

that of “Report Max”, meaning that the admitted class will have

a higher proportion of High types. And the expected payoff to

the College is also higher under “Report All” than ‘Report Max” —

and hence “Report All” is better not just from the perspective of

student equity, but from the College’s perspective as well. These

results generalize to k ≥ 2 tests as well, representing an unusual

but fortunate setting in which the goals of equity and accuracy

are aligned. We remark that an alternative solution would be to

require that all students take the exam only once—but this would

be (at best) challenging to implement, because standardized tests

are administered by independent entities with their own interests,

and different colleges have different admissions policies. What we

show is that the traditional “Report All” policy has an equilibrium

that has exactly the same effect as enforcing that students test

only once. This equilibrium is unique when k = 2, and even when

k > 2, all equilibria are strictly preferable under “Report All”, both

from the perspective of the College, and from the perspective of

equity (difference between false negative rates across populations)

compared to the “Report Max” equilibrium.

An interesting feature of the equilibrium outcome in “Report

All” is that while the College asks for all tests it conditions its

admissions decisions on the first test result only. This is a best
response for the College given the behavior of students and not a

matter of commitment. Thus, Category 1 and 2 students are treated

fairly. In conditioning on the first test score only it appears that the

College is throwing away information that it could have used to

improve its ability to distinguish between types. It is just that in
equilibrium the second test score is not informative.

There is a half century debate about the best method for treating

multiple scores from the ACT, SAT, and LSAT, see [1] for a survey.

The focus has been on the strength of the relationship between

various aggregates of (average, maximum) test scores and future

GPA. That focus has, as far as we are aware, continued to the present

day. None considers the possibility of simply ignoring some scores

as our equilibrium analysis suggests.

1.2 Related Work
Concerns for fairness in standardized testing arose the instant they

were introduced. In the US this dates to 1845, when Horace Mann

deployed standardized written exams as a replacement for the ex-

isting oral examination used for public school admission in Boston.

Reese [18] writes:

“What transpired then still sounds eerily familiar:

cheating scandals, poor performance byminority groups,

the narrowing of curriculum, the public shaming of

teachers, the appeal of more sophisticated measures

of assessment, the superior scores in other nations,

all amounting to a constant drumbeat about school

failure.”

For a recent survey of the fairness issue that standardized testing

raises see Grodsky et al [7], and see Hutchinson and Mitchell [11]

for a retrospective of the long history of thought on fairness in

standardized testing, contextualized within the current literature

on fairness in machine learning. More recently, the widespread

application of statistical techniques to high stakes decision making

has led to a resurgence of interest in fairness in classification and

prediction. False positive and false negative rates have once again

been focal measures of unfairness across populations — see e.g.

[3, 8, 15]. This literature is broad—here we provide a brief overview

of the most relevant subset of this literature, which uses equilibrium

analysis to make predictions about policy choices. Hu and Chen [9]

consider a two stage model of a labor market, and study interven-

tions at the first (“internship”) stage that can lead to more equitable

outcomes in equilibrium (See also Coate and Loury [4] and Foster

and Vohra [5] for related models of self-confirming equilibria in

labor markets from the economics literature). Liu et al [16] con-

sider a model of the labor market with higher dimensional signals,

and study equilibrium effects of “subsidy” interventions which can

lessen the cost of exerting effort. Kannan, Roth, and Ziani [14] study

a two-stage pipeline in which colleges admit students from one of

two populations based on a noisy signal about their type, and then

commit to a grading policy which is used by a rational downstream

employer to make hiring decisions. They study how policy deci-

sions at the level of the college affect various measures of equity at

the level of the employer’s hiring decisions. Three papers [2, 10, 17]

study “strategic classification” problems in which individuals ratio-

nally manipulate their features in response to a deployed classifier

in an attempt to optimize for their own outcome, and study the

equilibrium effects of different populations having different costs

for manipulation. Immorlica, Ligett, and Ziani [12] consider the

related problem of population level signalling, in which a third party

(i.e. a highschool) is able to commit to a signalling scheme for an
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entire population (i.e. a grading policy), in a Bayesian Persuasion

like model. They show that if one population of students is associ-

ated with a high school that is able to optimally signal, but another

population of students is associated with a high school that naively

signals, then against a Bayesian college, inequities arise in favor

of the population associated with the optimal signalling technol-

ogy — and that counter-intuitively, the introduction of an unbiased

standardized test (administered uniformly across all populations,

unlike in our model) can sometimes exacerbate this issue. Jung et
al. [13] study an equilibrium model of criminal justice, in which

individuals from populations that differ in their access to legal em-

ployment opportunities make rational decisions about whether or

not to commit crime, as a function of the criminal justice policy —

and conclude that the crime-minimizing policy should commit to

ignoring demographic information so as to equalize false positive

and negative rates across populations. Garg et al. [6] consider a

similar model of college admissions in the presence of standard-

ized testing, where a fraction of a disadvantaged population has

no access to standardized testing at all, and hence cannot apply to

schools that require it: they consider the effect on class quality and

diversity of eliminating standardized testing requirements.

2 REPORTING THE MAX SCORE
It is clear that if p is small enough, the College will be better off

rejecting all students. This is an uninteresting outcome, and we will

exclude it by assuming the p is sufficiently large. Below, we identify

a threshold p̂ such that for p < p̂ the only equilibrium under “Report

Max” is to reject all students and we restrict attention to values of

p above that threshold, i.e. p ∈ [p̂, 0.5).
We focus on a “separating equilibrium” in which the College

accepts a student if the score is A and rejects otherwise. This is the

case when the test is effective in selecting students. For a narrow

range of values in [p̂, 0.5) there is also an equilibrium where all

students are rejected. This is discussed in Appendix A.1.
For convenience of exposition, in the followingwewrite x̄ ≡ 1−x

for any variable x ∈ [0, 1].

Under the separating equilibrium, assuming it exists, only the

best score needs to be reported. Therefore a Category 2 student will

take the test twice if needed to get a score of A. Hence, a Category
2 type L student, denoted by (2,L), will report B with probability

α2
. Similarly, a Category 2 type H student, denoted by (2,H ), will

report A with probability 1 − (1 − α)2. Table 1 summarizes the

outcomes

In the following theorem, we characterize exactly when this

separating equilibrium exists under the “Report Max” policy:

Theorem 1. Let p̂ = 1+α (1−ϕ)
1

1−α +2α (1−ϕ)
∈ (1−α , 1

2
).When p ∈ [p̂, 0.5],

“ReportMax” has a separating equilibrium inwhich the College accepts
a student if the score is A and rejects otherwise. Category 2 students
take the test twice if they receive a score of B on the first attempt.

Remark: Unsurprisingly, the more accurate the test, the larger

the range of p’s for which there is a separating equilibrium. As

the accuracy of the test approaches 1, one can have a separating

equilibrium even if a vanishing fraction of students are of type H.

Proof. From Table 1, we see that the probability that a student

is of type H given they report A is

αϕp + (1 − ᾱ2) ¯ϕp

αϕp + ᾱϕp̄ + (1 − ᾱ2) ¯ϕp + (1 − α2) ¯ϕp̄
.

If this exceeds 0.5, anyone who reports A is admitted. This happens

if [
αϕ + (1 − ᾱ2) ¯ϕ

]
p ≥

[
ᾱϕ + (1 − α2) ¯ϕ

]
(1 − p)

⇒ p ≥ p̂.

From Table 1 we see that the probability of high type given a

score of B is

ᾱϕp + ᾱ2 ¯ϕp

ᾱϕp + αϕp̄ + ᾱ2 ¯ϕp + α2 ¯ϕp̄
.

If this is less than 0.5, then, anyone with a B score is rejected. This

happens if [
ᾱϕ + ᾱ2 ¯ϕ

]
p ≤

[
αϕ + α2 ¯ϕ

]
(1 − p),

which holds true when p ≤ 0.5. □

3 REPORTING ALL SCORES
Here we characterize the equilibrium outcome under “Report All”.

Let uB be 1 if the College accepts a student reporting a single B
score and zero otherwise. Similarly define uA,uBA,uAB ,uBB ,uAA
to be the indicators of whether the College accepts a student re-

porting the corresponding sequence of exam scores. We proceed

by examining whether various combinations of values for these u
variables can be supported in equilibrium. It might seem that some

combinations could be eliminated immediately—but things are not

so simple.

Sometimes our intuition will be confirmed. For example, it may

be obvious that we should have uB = uBB = 0. Why would the

College accept a student who only reports Bs? If p were large, say

close to 1, then it would. But in our case, p < 0.5 and our analysis

will confirm that for such values of p, we have uB = uBB = 0 in

equilibrium.

Now a more counter-intuitive case: ShoulduAB = uBA? After all,
why should the timing of a B score matter? If these test scores were

exogenously given to us, then by symmetry, they would induce the

same posterior belief on a student’s type. But our analysis shows

that in equilibrium, there is an important distinction because of the

incentives induced in equilibrium for students to take a second test

— and this in turn affects the inferences the College makes.

We introduce the following variables to track the actions of the

category 2 students as a function of their first test score:

(1) fL(A): the probability that a (2,L) students stops after one
test with a score of A.

(2) fL(B): the probability that a (2,L) student stops after one
test with a score of B.

(3) fH (A): the probability that a (2,H ) students stops after one

test with a score of A.
(4) fH (B): the probability that a (2,H ) students stops after one

test with a score of B.

We remark that we can interpret these probabilities as the frac-
tion of a student population that takes the corresponding action, so

we do not have to imagine that individual students randomize.
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Table 1: Probability Distribution with Best Test Reported [Separating Case]

Best Score (1,H) (1,L) (2,H) (2,L)

A αϕp ᾱϕp̄ (1 − ᾱ2) ¯ϕp (1 − α2) ¯ϕp̄

B ᾱϕp αϕp̄ ᾱ2 ¯ϕp α2 ¯ϕp̄

Total ϕp ϕp̄ ¯ϕp ¯ϕp̄

Fixing student strategies, the probabilities of each testing out-

come are displayed in Table 2.
The following theorem characterizes equilibrium outcomes un-

der “Report All" within the parameter range of interest.

Theorem 2 (First-Score Eqilibrium). For p ∈ (1 − α , 0.5),
the unique equilibrium outcome for “Report All" is that a student is
admitted if their first (or only) score is A and rejected otherwise.

Remark: For intuition, we prove Theorem 2 here, but we remark

that it can also be derived as a corollary of themore general Theorem
5 for the case in which Category 2 students may take k ≥ 2 tests

and p ∈ (0, 1). We prove this more general theorem in Section 5.2.

Proof. Let the College’s posterior belief that a student is of

type H after observing some (sequence of) reported scores s ∈

{B,A,BB,BA,AB,AA} be ps ∈ [0, 1]. The College’s expected payoff

from admitting a student with score s is 1·ps+(−1)·(1−ps ) = 2ps−1.

Hence, the optimal admission policy for college is:

us =


1 if ps >

1

2
,

0 or 1 if ps =
1

2
,

0 if ps <
1

2
.

From Table 2, we can compute:

pA =
ϕpα + ¯ϕpα fH (A)

ϕ(pα + p̄ᾱ) + ¯ϕ[pα fH (A) + p̄ᾱ fL(A)]
∈ (0, 1), (1)

pB =
ϕpᾱ + ¯ϕpᾱ fH (B)

ϕ(pᾱ + p̄α) + ¯ϕ[pᾱ fH (B) + p̄α fL(B)]
∈ (0, 1), (2)

pAA =
pα2 ¯fH (A)

pα2 ¯fH (A) + p̄ᾱ2 ¯fL(A)
if pα2 ¯fH (A) + p̄ᾱ2 ¯fL(A) > 0,

(3)

pAB =
p ¯fH (A)

p ¯fH (A) + p̄ ¯fL(A)
if p ¯fH (A) + p̄ ¯fL(A) > 0, (4)

pBA =
p ¯fH (B)

p ¯fH (B) + p̄ ¯fL(B)
if p ¯fH (B) + p̄ ¯fL(B) > 0, (5)

pBB =
pᾱ2 ¯fH (B)

pᾱ2 ¯fH (B) + p̄α2 ¯fL(B)
if pᾱ2 ¯fH (B) + p̄α2 ¯fL(B) > 0. (6)

Note that psB < psA if fL(s) < 1 and fH (s) < 1 for any s ∈

{A,B}. Also, pAB , pBA if any of the following scenarios appear

in equilibrium : (i) all students test once when their first score is

A; or (ii) all students test once when their first score is B; or (iii)
¯fH (A)/ ¯fL(A) , ¯fH (B)/ ¯fL(B).
Next we will prove by contradiction that for all p ∈ (ᾱ , 0.5), the

College admits students submitting a single score A and rejects

students submitting B,BA, or BB in equilibrium. Thus, in any equi-

librium, the admission outcome depends solely on the first score.

Here we split the discussion according to whether the student’s

first score is A or B.

Case 1: The First Score is A
Suppose, for contradiction, the College rejects students who

submit a single score of A. Then we have the following two cases:

(1) If the College rejects all scores starting inA, namelyA,AA,AB,
then we need max{pA,pAA,pAB } ≤ 1/2 to rationalize this

admission rule. Hence by the law of total probability, the
probability that a student is of type H and receives a score

of A on the first attempt is:

pα =pA {ϕ(pα + p̄ᾱ ) + ¯ϕ[pα fH (A) + p̄ᾱ fL (A)]}

+ pAA ¯ϕ[pα 2 ¯fH (A) + p̄ᾱ 2 ¯fL (A)] + pAB ¯ϕαᾱ [p ¯fH (A) + p̄ ¯fL (A)]

≤
1

2

{ϕ(pα + p̄ᾱ ) + ¯ϕ[pα fH (A) + p̄ᾱ fL (A)]

+ ¯ϕ[pα 2 ¯fH (A) + p̄ᾱ 2 ¯fL (A)] + ¯ϕαᾱ [p ¯fH (A) + p̄ ¯fL (A)]}

=
1

2

(pα + p̄ᾱ ).

This implies pα/(pα + p̄ᾱ) ≤ 1/2, i.e., p ≤ ᾱ , a contradiction.
(2) If the College admits students reporting eitherAA orAB, then

all Category 2 students take the test a second time after ob-

taining a first score ofA (i.e., fH (A) = fL(A) = 0). In this case,

the only students reporting a single score of A are from Cat-

egory 1, and so by Equation 1, we have pA = pα/(pα + p̄ᾱ).
Since the College rejects students with a single score of A,
we obtain pA ≤ 1/2. This implies p ≤ ᾱ , a contradiction

again.

Therefore, as long as p ∈ (ᾱ , 0.5), a single score A yields admission.

Case 2: The First Score is B
Suppose, for a contradiction, the College admits students report-

ing any of B,BA or BB. Then we have the following three cases:

(1) If the College admits all scores starting inB, namelyB,BA,BB,
then we need min{pB ,pBA,pBB } ≥ 1/2 to rationalize this

admission rule. Hence by the law of total probability, the
probability that a student is of type H and receives a score

of B on the first attempt is:

pᾱ =pB {ϕ(pᾱ + p̄α ) + ¯ϕ[pᾱ fH (B) + p̄α fL (B)]}

+ pBAα ᾱ ¯ϕ[p ¯fH (B) + p̄ ¯fL (B)] + pBB ¯ϕ[pᾱ 2 ¯fH (B) + p̄α 2 ¯fL (B)]

≥
1

2

{ϕ(pᾱ + p̄α ) + ¯ϕ[pᾱ fH (B) + p̄α fL (B)]

+ α ᾱ ¯ϕ[p ¯fH (B) + p̄ ¯fL (B)] + ¯ϕ[pᾱ 2 ¯fH (B) + p̄α 2 ¯fL (B)]}

=
1

2

(pᾱ + p̄α ).
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Table 2: Distribution of Testing Outcomes

Score (1,H) (1,L) (2,H) (2,L)

A αϕp ᾱϕp̄ α ¯ϕp fH (A) ᾱ ¯ϕp̄ fL(A)

B ᾱϕp αϕp̄ ᾱ ¯ϕp fH (B) α ¯ϕp̄ fL(B)

AA 0 0 α2 ¯ϕp ¯fH (A) ᾱ2 ¯ϕp̄ ¯fL(A)

AB 0 0 αᾱ ¯ϕp ¯fH (A) αᾱ ¯ϕp̄ ¯fL(A)

BA 0 0 αᾱ ¯ϕp ¯fH (B) αᾱ ¯ϕp̄ ¯fL(B)

BB 0 0 ᾱ2 ¯ϕp ¯fH (B) α2 ¯ϕp̄ ¯fL(B)

Total ϕp ϕp̄ ¯ϕp ¯ϕp̄

This implies pᾱ/(pᾱ + p̄α) ≥ 1/2, i.e., p ≥ α > 0.5, a contra-

diction.

(2) If the College admits students reporting B but rejects stu-

dents reporting either BA or BB, then all Category 2 students

take the test once if their first score is B—since they won’t

run the risk of being rejected due to the second test result.

Thus by Equation 2, pB = pᾱ/(pᾱ + p̄α) ≥ 1/2, implying

p ≥ α > 0.5, a contradiction again.

(3) If the College rejects students reporting a score of B but

admits students reporting either a score of BA or BB, then
all Category 2 students take the test twice if their first score

is B. In this case, by Equation 5 and Equation 6, pBB < pBA =
p < 1/2, a contradiction to the assumption that the College

admits either BA or BB.

Therefore, as long as p ∈ (ᾱ , 0.5), a score beginning in B yields

rejection. This completes the proof. □

In what follows, we refer to the set of equilibria in which the

admission outcome is solely a function of the first score as the

first-score equilibrium. In the first-score equilibrium, a single score

of A yields admission, and a score beginning in B yields rejection.

Note that it is possible that AA yields admission while AB yields

rejection; however, in this case, all students only take the test once in

equilibrium if they receive a score ofA in the first test. Therefore, the

admission outcome only depends on the first score in equilibrium.

Note also that BA always yields rejection but it is possible that AB
yields admission (e.g., when p = 2/5,α = 9/10,ϕ = 2/3, fH (A) =
1/2, fL(A) = 3/4, fH (B) = fL(B) = 1). Hence, the order of the score

sequence matters.

4 COMPARISONS
In this section, we compare the separating equilibrium under “Re-

port Max” with the (unique) first-score equilibrium under “Report

All”, both from the perspective of student equity, and from the

perspective of the College’s objective.

We recall that the false negative rate corresponds to the propor-

tion of High type students who are rejected, and the false positive
rate corresponds to the proportion of Low type students who are ac-

cepted. It is straightforward to compare the false positive and false

negative rates of the separating equilibrium under “Report Max”

with the first-score equilibrium under “Report All’. We summarize

the results in the table below.

We observe that the “Report Max” equilibrium favors the ad-

vantaged (Category 2) students, in that for each type L,H , their

probability of admissions is strictly higher compared to the disad-

vantaged (Category 1) students of the same type. This manifests

itself as both a higher false positive rate and a lower false negative

rate, compared to the “Report All” equilibrium. In contrast, because

the College in the “Report All” equilibrium makes decisions only as

a function of the first test score, the probability of admissions con-

ditional on type is identical across advantaged and disadvantaged

students. This manifests itself as an identical false positive and false

negative rate across categories. We can conclude that from the per-

spective of equity across advantaged and disadvantaged students,

the “Report All" policy is preferable to the “Report Max" policy. In

Appendix B we compare the positive and negative predictive values

of the two policies.

Next, we compare the college’s utility (i.e. its classification accu-
racy for the task of distinguishing High and Low type students) in

the equilibrium outcomes for both policies. A finding that would

be typical of the algorithmic fairness literature would be that the

more equitable policy would also be less accurate, and so we would

have to manage a tradeoff. However, in this case, in sharp contrast,

we find that the College has higher utility under the “Report All”

policy, demonstrating that not only is “Report All” better from the

perspective of student equity, but it is strictly better from the per-

spective of classification accuracy as well (and hence better for the

party — the college — deploying the policy).

Theorem 3. For any α ∈ (1/2, 1) and p < 1/2, the College’s
expected payoff per student under “Report All” exceeds that under
“Report Max” in equilibrium.

Proof. The expected payoff per student under “Report All” is

αp − ᾱp̄. The expected payoff per student under “Report Max” is

ϕ(αp− ᾱp̄)+ ¯ϕ[(1− ᾱ2)p−(1−α2)p̄]. Hence, the difference between
the College’s expected payoff under these two schemes is:

αp − ᾱp̄ − {ϕ(αp − ᾱp̄ + ¯ϕ[(1 − ᾱ2)p − (1 − α2)p̄]}

= ¯ϕ[αp − ᾱp̄ − (1 − ᾱ2)p + (1 − α2)p̄]

= ¯ϕαᾱ(1 − 2p) > 0

where the last inequality holds when α ∈ (0, 1),p < 1/2. □

Note that for all the quantities we have considered, equality

occurs when α = 1 (i.e., when the test is a perfect noiseless signal
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Table 3: False Negative (left) and False Positive (right) Rates Across Categories of Students

FN (1,H) (2,H)

Max 1 − α (1 − α)2

All 1 − α 1 − α

FP (1,L) (2,L)

Max 1 − α 1 − α2

All 1 − α 1 − α

of student type). In this case, the College is able to admit exactly

the High type students and reject exactly the Low type students

under both reporting schemes, and there is no advantage of one

over the other either in terms of equity or accuracy. As the accuracy

of the test α decreases, all the disparities we have measured grow

monotonically.

5 THE GENERAL CASE: MORE TESTS, WIDER
PARAMETER RANGES

Thus far we have assumed that the advantaged students (Category

2) are able to take up to two tests, and that High type students are

rare — i.e. that p < 1

2
. In this section, we generalize our results to a

broader setting. Now, Category 2 students can adaptively choose to

take the test up to k times for an arbitrary k ≥ 2, and we consider

the full parameter range p ∈ (0, 1) . As one might imagine, the set

of possible equilibria under “Report All” expands. Nevertheless, we

identify a wide range of parameters for which basing admission

on the first reported test score only continues to be an equilibrium

outcome. This equilibrium outcome maintains the advantages of

the “Report All” equilibrium outcome we studied in the special case

of k = 2. Moreover, we prove that all equilibria of the “Report All”
policy dominate the equilibrium of the “Report Max” policy in terms

of both equity and accuracy: the College continues to strictly prefer

outcomes under the “Report All” policy for all possible equilibria,

and similarly, all such equilibria have smaller false positive and

false negative gaps between Categories of students, as compared to

the “Report Max” equilibrium.

5.1 Report Max
We start by characterizing the equilibrium outcome under “Report

Max”. As before we focus on a separating equilibrium in which

the College accepts a student if the reported score is A and rejects

otherwise. Under this separating equilibrium, assuming it exists,

only the best score will be reported. Therefore Category 2 students

will take the test as often as needed to get an A score. Therefore a

(2,L) student will report B with probability αk , and a (2,H ) student

will report A with probability 1 − (1 − α)k .

Theorem 4. Let p̂k = [ϕ(1 − α) + (1 − ϕ)(1 − αk )]/{ϕ + (1 −

ϕ)[2−αk −(1−α)k ]} and p̂′k = [ϕα + (1 − ϕ)αk ]/{ϕ + (1−ϕ)[αk +

(1 − α)k ]} for any k ≥ 2. “Report Max” has a nontrivial (separating)
equilibrium if and only if

p ∈ [p̂k , p̂
′
k ].

Apparently, the nontrivial equilibrium outcome is unique: the College
accepts a student if the reported score is A and rejects otherwise.
Category 2 students take the exam as many times as they need to get
an A score (up to k times).

Note that the parameter range in which a separating equilibrium

exists is always nontrivial since p̂′k > α > 1/2 > p̂k > ᾱ for all

k ≥ 2. Observe also that p̂k strictly increases in k , which captures

the intuition that under “Report Max", increased testing makes a

report of A less indicative of a high type. The proof can be found in

the Appendix.

5.2 Report All
We now turn to the “Report All” policy. We find that within a wide

range of parameters (p ∈ [1 − α ,α]) there still exists the first-score
equilibrium in which the admission outcome is solely based on the

first test score, and hence both populations are treated equally. We

also characterize the parameter range in which other non-trivial

equilibria exist.

Theorem 5. Let p∗k = ᾱk−2/(αk−2 + ᾱk−2) for k ≥ 2. Under
“Report All", for any α ∈ (1/2, 1],

(1) There exists an equilibrium in which the admission outcome
depends solely on the first score if and only if

p ∈ [1 − α ,α].

(2) There exists an equilibrium in which the admission outcome
depends on more than the first score if and only if

p ∈ [p∗k+2
, 1 − α] ∪ [p∗k ,α].

(3) For any p ∈ (1 − α ,α), a reported (single) score of A yields
admission and a reported score sequence that consists entirely
of B scores yields rejection in all equilibria.

The proof can be found in the Appendix.

A direct result of Theorem 5 is that when p ∈ (ᾱ ,p∗k ), the admis-

sion outcome is unique and it depends only on the first score. Note

that p∗k > ᾱ only when k = 2. This gives us the following corollary,

which is a generalization of Theorem 2.

Corollary 5.1. If k = 2 and p ∈ (1 − α ,p∗
2
) = (1 − α , 1/2), the

unique equilibrium under “Report All" is the first-score equilibrium. If
k ≥ 3, a first-score equilibrium always coexists with an equilibrium
in which the admission outcome can be affected by more than the first
score.

By Theorem 4 and Theorem 5, the thick segments in Figure 1

illustrate the range of p in which nontrivial equilibrium outcomes

exist under the two score reporting policies.

5.3 Comparisons
Once again, it is straightforward to compare the false positive and

false negative rates of the separating equilibria under “Report Max”

with the first-score equilibirum under “Report All”, whenever it

exists. The relevant parameter range is p ∈ [p̂k , p̂
′
k ] ∩ [ᾱ ,α] =

[p̂k ,α] which is nontrivial for all k ≥ 2 since p̂k < 1/2 < α . We
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0 1

(a) Report Max

0 1

(b) Report All

Figure 1: The Existence of Nontrivial Equilibria

summarize the results in the tables below and we can see that in a

corresponding parameter range in which p ∈ [p̂k ,α], “Report All"
achieves parity across categories in false positive and false negative

rates, whereas for “Report Max”, there is necessarily a discrepency

between false positive rates and false negative rates—in favor of the

advantaged (Category 2) students—which increases as the number

of tests k available to the advantaged population increases.

What about equilibria other than the first-score equilibrium?

Here, students fromCategory 2 again have an advantage, but we can

quantify the degree of that advantage by measuring the disparity

of false positive rates and false negative rates between Category 1

and Category 2 students. What we can show is that this disparity

is always lower in any equilibrium of “Report All” compared to

“Report Max” – and hence, while some inequity may remain under

“Report All”, it is reduced (always weakly, and strictly if either k > 3

or p < 1/2) compared to “Report Max”.

We proceed by comparing the unique nontrivial “Report Max”

equilibrium to an equilibrium under “Report All”. First note that un-

der both “Report All" and “Report Max", a singleA yields admission

while a single B yields rejection when p ∈ [p̂k ,α]. Therefore, the
false positive and false negative rates remain the same for Category

1 students across both admission policies. Next, we note that in

any equilibrium under “Report All”, a score sequence consisting

entirely of B’s results in rejection — and hence the admission prob-

ability for Category 2 students (regardless of their type) can only

be smaller under “Report All” than under “Report Max” — since any

other sequence of scores would lead to admission under “Report

Max”, but possibly not under “Report All”. Finally, we observe that

if either k > 3 or p < 1/2, there is some sequence of scores that
leads to rejection under “Report All”, but not under “Report Max”,

showing that the probability of admission for Category 2 students

is strictly lower under “Report All” for both types, which implies

the corresponding reduction in false positive and false negative

disparities. To see, consider that if this does not hold, the College

must accept students with the length-k score sequence ŝ = B . . . BA

while rejecting all score sequences s ∈ ∪ki=1
{B}i . Under this ad-

missions policy, Category 2 students who have only received B’s
thus far would continue to take the test (up to k times) and thus to

rationalize the admissions rule, we must have:
pᾱk−1α

pᾱk−1α+p̄αk−1ᾱ
≥ 1

2
,

i.e.,p ≥ αk−1ᾱ
αk−1ᾱ+ᾱk−1α

≥ 1

2
. Note that a nontrivial equilibrium under

“Report All" exists only if p ≤ α , and αk−1ᾱ
αk−1ᾱ+ᾱk−1α

≤ α only when

k ∈ {2, 3}. Hence, if p < 1/2 or k > 3, there exists at least one score

sequence (ŝ) which is rejected under “Report All” but is admitted

under “Report Max”.

In Appendix C.3, we compare the positive and negative predictive

values of the two policies in the general case.

Finally, we recover that even in the general case, the College’s

utility is strictly higher under the “Report All” policy compared

to “Report Max” — and so once again, the “Report All” policy is

preferable not just from the perspective of equity, but also from

the selfish perspective of the College. First, we prove a lemma that

establishes this specifically for the first-score equilibrium of “Report

All” — but we use this Lemma to prove Theorem 6 below, which
establishes the result for all equilibria under “Report All”.

Lemma 5.2. Let p∗∗k = (α −αk )/(1−αk − ᾱk ) ∈ [1/2,α) For any
α ∈ (1/2, 1), p < p∗∗k , the College’s expected payoff in the first score
equilibrium under the “Report All” policy exceeds what it is under
the “Report Max” separating equilibrium. The expected payoff gap
increases with the number of tests k available to Category 2 students.

Proof. The expected payoff per student under the first score

equilibrium for “Report All” is αp − ᾱp̄. The expected payoff per

student under “Report Max” is ϕ(αp−ᾱp̄)+ ¯ϕ[(1−ᾱk )p−(1−αk )p̄].
Hence, the difference between the College’s expected payoff under

these two schemes is:

αp − ᾱp̄ − {ϕ(αp − ᾱp̄) + ¯ϕ[(1 − ᾱk )p − (1 − αk )p̄]}

= ¯ϕ[αp − ᾱp̄ − (1 − ᾱk )p + (1 − αk )p̄]

= ¯ϕαᾱ
k−2∑
i=0

(α i p̄ − ᾱ ip) = ¯ϕ[(α − αk )p̄ − (ᾱ − ᾱk )p] > 0

where the last inequality holds whenp < (α − αk )/(1 − αk − ᾱk ) =
p∗∗k and α > 1/2. □

We can strengthen Lemma 5.2 by using it to prove that for every
nontrivial equilibrium under “Report All”, the College has higher

expected payoff compared to “Report Max”. Hence, the College
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Table 4: False Negative (left) and False Positive (right) Rates with k Tests Available [Using First-Score Equilibrium]

(1,H) (2,H)

Max 1 − α (1 − α)k

All 1 − α 1 − α

(1,L) (2,L)

Max 1 − α 1 − αk

All 1 − α 1 − α

has an incentive to prefer this policy even without the ability to

perform equilibrium selection.

Theorem 6. For any α ∈ (1/2, 1), p < p∗∗k , the College obtains
strictly higher utility under the “Report All" policy compared to
the“Report Max" policy in every nontrivial equilibrium.

Additionally, amongst the “Report All" equilibria, the College has
a higher expected payoff under equilibria in which the admission
outcome depends on more than the first reported score.

Proof. The statement holds vacuously true for p < p̂k ∈ (0,p∗∗k )

since there only exists trivial equilibrium of rejecting all under

“Report Max". Recall that when p ∈ [p̂k ,p
∗∗
k ) ⊂ (1 − α ,α), a student

whose first (or only) score is A gets admission under both schemes.

Therefore, the only difference between equilibria under “Report

All" and “Report Max" consists in how they treat students whose

first (or only) score is B. By Lemma 5.2, we know already that for

the first score equilibrium under “Report All", the College strictly

prefers “Report All" to “Report Max".

Therefore, it remains to study the case in which the equilibrium

admission outcome depends on more than the first score. Fix any

such an equilibrium and define S to be the set of score sequences

of length ≥ 2 that lead to admissions
9
:

S ≡ {s ∈ ∪ki=2
{A,B}i |us = 1}.

For any s ∈ S , denote the fraction of students who obtain score s
in the equilibrium by qs ∈ [0, ¯ϕ]. Then the expected payoff for the

college under this equilibrium of the “Report All” policy is:

αp − ᾱp̄︸   ︷︷   ︸
A yields admission

+
∑
s ∈S

qs [ps + (−1)(1 − ps )]︸                          ︷︷                          ︸
Longer score sequences yield admission

.

For the College to admit s ∈ S , we need ps ≥ 1/2, and thus the last

term

∑
s ∈S qs [ps + (−1)(1−ps )] =

∑
s ∈S qs (2ps − 1) ≥ 0. Note that

the first two terms are the expected payoff for the College in the

first-score equilibrium. Therefore, the College prefers a non-first-

score equilibrium than the first-score equilibrium under “Report

All", which in turn is strictly better than the separating equilibrium

under “Report Max" by Lemma 5.2. □

Remark: Note that p∗∗k = (α − αk )/(1 − αk − ᾱk ) ∈ [1/2,α)

strictly increases in k and limk→∞ p∗∗k = α , so the range of interest
expands as the number of tests available increase and in the limit,

the results in Theorem 6 hold in every nontrivial equilibrium com-

parison for p ∈ (0, 1). Moreover, we may want to capture the idea

that talent is scarce by further assuming that p < 1/2 ≤ p∗∗k . In this

case, findings in Theorem 6 are valid.

9
The set S is nonempty. Otherwise we are back to the case in which only the first

score matter for the admissions outcome.

6 DISCUSSION
Allowing students to retake standardized tests and report only

the best scores obtained—a currently common practice known as

“super-scoring”—clearly gives an advantage to well-resourced stu-

dents who have the ability to take the test multiple times. A natural

fix would seem to be to require that all students take the exam only

once, thereby enforcing equity—but for various reasons, including

that tests are administered by third party entities with their own

interests, and that different colleges have different admission poli-

cies, this seems unworkable. A priori, the effects of a traditional
alternative—requiring students to report all of their scores — are

less transparent. This is because it seems to still give well-resourced

students an advantage, as a population: it provides the option for

the more talented students to report a more accurate signal (by
taking the exam several times), while allowing the less talented

students to pool with the lower-resourced students by taking the

exam only once, thereby providing a less accurate signal and an

increased chance of admissions.

Nevertheless, we show that in equilibrium, the traditional policy

of requiring that all scores be reported can have the same effect as

enforcing that students take the exam only once. Moreover, this

policy is preferable to super-scoring, both from the perspective of

equity—in the “Report All” equilibrium, the chance that a student

is admitted is independent of their population, conditional on their

type—but also from the perspective of the college. This represents

an unusual but important situation in which goals of accuracy

and equity are in alignment, and hence we can move to a fairness

enhancing policy without sacrificing accuracy.
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A MATERIAL FROM SECTION 2
A.1 Reject All Equilibrium
We identify a threshold

ˆp̂ such that for p ∈ [p̂, ˆp̂] ⊂ [p̂, 0.5] there

is also a reject all equilibrium. For p ∈ ( ˆp̂, 0.5], the separating

equilibrium is unique. Let fL(B) be the probability that a (2,L)
student stops after taking one test with score B. Let fH (B) denote
the probability that a (2,H ) student stops after one test with score

of B. Table 5 summarizes the possible outcomes.

Suppose the College rejects all students regardless of reported

scores. Since score doesn’t matter for the admission decision, any

fL(B) ∈ [0, 1], fH (B) ∈ [0, 1] are best responses for Category 2

students in this case. As the College rejects students with a score

of A, the following must hold:

αϕp + α ¯ϕp[1 + ᾱ ¯fH (B)]

αϕp + ᾱϕp̄ + α ¯ϕp[1 + ᾱ ¯fH (B)] + ᾱ ¯ϕp̄[1 + α ¯fL(B)]
≤

1

2

⇒ ¯fL(B) ≥
p − ᾱ + αᾱ ¯ϕp ¯fH (B)

αᾱ ¯ϕp̄
. (7)

As the College rejects students with signal B, the following must

be true:

ᾱϕp + ᾱ ¯ϕp[1 − α ¯fH (B))]

ᾱϕp + αϕp̄ + ᾱ ¯ϕp[1 − α ¯fH (B)] + α ¯ϕp̄[1 − ᾱ ¯fL(B)]
≤

1

2

⇒ ¯fL(B) ≤
−p + α + αᾱ ¯ϕp ¯fH (B)

αᾱ ¯ϕp̄
. (8)

Combining (7) and (8) we deduce that

−p + α + αᾱ ¯ϕp ¯fH (B)

αᾱ ¯ϕp̄
≥

p − ᾱ + αᾱ ¯ϕp ¯fH (B)

αᾱ ¯ϕp̄
⇒ p ≤

1

2

⇒
−p + α + αᾱ ¯ϕp ¯fH (B)

αᾱ ¯ϕp̄
≥ 0,

p − ᾱ + αᾱ ¯ϕp ¯fH (B)

αᾱ ¯ϕp̄
≤ 1 ⇒ p ≤

αᾱ ¯ϕ + ᾱ

αᾱ ¯ϕ + 1

, ¯fH (B) ≤
αᾱ ¯ϕp̄ + ᾱ − p

αᾱ ¯ϕp
.

Therefore, for p ≤ ˆp̂ where
ˆp̂ = min{ 1

2
,
α ᾱ ¯ϕ+ᾱ
α ᾱ ¯ϕ+1

} ∈ (p̂, 1

2
] , there

exists an equilibrium in which the College rejects all students. In

such an equilibrium, (2,L) take a second test with probability
¯fL(B)

when the first score is B, (2,H ) students take a second test with

probability
¯fH (B) when the first score is B and we have

¯fH (B) ∈

[0,
α ᾱ ¯ϕp̄+ᾱ−p

α ᾱ ¯ϕp
], ¯fL(B) ∈ [

p−ᾱ+α ᾱ ¯ϕp ¯fH (B)
α ᾱ ¯ϕp̄

,
−p+α+α ᾱ ¯ϕp ¯fH (B)

α ᾱ ¯ϕp̄
].

B MATERIAL FROM SECTION 4
B.1 Comparisons of Positive and Negative

Predictive Value
We compare the positive predictive value of the equilibrium out-

comes for Report Max and Report All — i.e. the probability, in

equilibrium, that a student is a High type, conditional on receiving

admissions to the college. Higher positive predictive values will

correspond to admissions outcomes with a higher proportion of

High type students among the admitted class, and are hence desir-

able. We find that the positive predictive value is strictly higher for

the “Report All” policy:

Theorem 7. For any α ∈ ( 1

2
, 1), p < 1

2
, the positive predictive

value of the “Report All” policy strictly exceeds that of the “Report
Max” policy in any nontrivial equilibrium.

Proof. The positive predictive value of “Report Max” is

αϕp + (1 − ᾱ2) ¯ϕp

αϕp + ᾱϕp̄ + (1 − ᾱ2) ¯ϕp + (1 − α2) ¯ϕp̄
=

(1 + ᾱ ¯ϕ)αp

αp + ᾱp̄ + αᾱ ¯ϕ
.

The positive predictive value of “Report All” coincides with the

policy of only looking at the first score, so it has value

αp

αp + ᾱp̄
.

It is straightforward to verify that the first expression is strictly

smaller than the second if α ∈ (0.5, 1). □

For completeness, we compare the negative predictive value of
the College’s admissions rule used under both policies. The negative

predictive value is the probability, in equilibrium, that a student is

a Low type, conditional on being rejected from the college.

Theorem 8. For any α ∈ ( 1

2
, 1) and p < 0.5, the negative predic-

tive value of the “Report All” policy is strictly smaller than that of the
“Report Max” policy in any nontrivial equilibrium.

Proof. The negative predictive value of “Report Max” is

αϕp̄ + α2 ¯ϕp̄

ᾱϕp + αϕp̄ + ᾱ2 ¯ϕp + α2 ¯ϕp̄
.

The negative predictive value of “Report All” is

p̄α

pᾱ + p̄α
.

It is straightforward to verify that the first is larger than the second

for α > 1

2
. □
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Table 5: Probability Distribution with Best Test Reported [General Case]

Best Score\Type (1,H) (1,L) (2,H) (2,L)

A αϕp ᾱϕp̄ α ¯ϕp[1 + ᾱ ¯fH (B)] ᾱ ¯ϕp̄[1 + α ¯fL(B)]

B ᾱϕp αϕp̄ ᾱ ¯ϕp[1 − α ¯fH (B)] α ¯ϕp̄[1 − ᾱ ¯fL(B)]

Total ϕp ϕp̄ ¯ϕp ¯ϕp̄

C MATERIAL FROM SECTION 5
C.1 Proof of Theorem 4
We can calculate that the probability that a student is of type H
given they report A is

αϕp + (1 − ᾱk ) ¯ϕp

αϕp + ᾱϕp̄ + (1 − ᾱk ) ¯ϕp + (1 − αk ) ¯ϕp̄
.

If this exceeds 0.5, then anyone who reports A is admitted by the

College. This happens exactly when:[
αϕ + (1 − ᾱk ) ¯ϕ

]
p ≥

[
ᾱϕ + (1 − αk ) ¯ϕ

]
(1 − p)

⇒ p ≥ p̂k

The probability of being a high type given a report of B is

ᾱϕp + ᾱk ¯ϕp

ᾱϕp + αϕp̄ + ᾱk ¯ϕp + αk ¯ϕp̄
.

If this is less than 0.5, then, anyone with an B score is rejected. This

happens exactly when[
ᾱϕ + ᾱk ¯ϕ

]
p ≤

[
αϕ + αk ¯ϕ

]
(1 − p)

⇒ p ≤ p̂′k .

C.2 Proof of Theorem 5
We write ps ∈ [0, 1] to denote the college’s posterior belief that

the student is of High type after observing a reported score s ∈

∪ki=1
{A,B}i .10 For the analysis, we will also be interested in the

proportion of high type students among all students whose reported

scores start with s (and might have an arbitrary continuation). We

denote this by ps∗ ∈ [0, 1] with the convention that ps∗ = 0 if no

score starts in s in equilibrium. For any s the optimal admissions

policy for the college remains:

us =


1 if ps >

1

2
,

0 or 1 if ps =
1

2
,

0 if ps <
1

2
.

It will be useful to group testing outcomes by whether they

consist of a single score, or more than one score. This distinction is

important because Category 2 students can pool with Category 1

students only if they take the test only once. Just as in Table 2, we
display the probabilities of testing outcomes in Table 6 in which s∗
denotes the set of all scores starting in s .

10∪ki=1
{A, B }i = {A, B, AA, AB, BA, BB, · · · , A . . .A︸   ︷︷   ︸

k

, · · · , B . . . B︸   ︷︷   ︸
k

} denotes

the set of all possible score sequences that can result from taking the test up to k times.

From Table 6 , we can compute:

pA =
ϕpα + ¯ϕpα fH (A)

ϕ(pα + p̄ᾱ) + ¯ϕ(pα fH (A) + p̄ᾱ fL(A))
∈ (0, 1),

pB =
ϕpᾱ + ¯ϕpᾱ fH (B)

ϕ(pᾱ + p̄α) + ¯ϕ(pᾱ fH (B) + p̄α fL(B))
∈ (0, 1),

pAA∗ =
pα2 ¯fH (A)

pα2 ¯fH (A) + p̄ᾱ2 ¯fL(H )
1{ ¯f 2

H (A) + ¯f 2

L (A) > 0},

pAB∗ =
p ¯fH (H )

p ¯fH (A) + p̄ ¯fL(H )
1{ ¯f 2

H (A) + ¯f 2

L (A) > 0},

pBA∗ =
p ¯fH (B)

p ¯fH (B) + p̄ ¯fL(B)
1{ ¯f 2

H (B) + ¯f 2

L (B) > 0},

pBB∗ =
pᾱ2 ¯fH (B)

pᾱ2 ¯fH (B) + p̄α2 ¯fL(B)
1{ ¯f 2

H (B) + ¯f 2

L (B) > 0}

where 1{·} is the indicator function whose value is 1 if the state-

ment in brackets is true and 0 otherwise. Note that for any s ∈

{A,B},psB∗ ≤ psA∗ if ¯f 2

H (s) + ¯f 2

L (s) > 0 (i.e., some students take

the test more than once when the first score is s). Furthermore, to

identify the relationship between the value of ps∗ and the matching

equilibrium admissions decisions for a reported score sequence s ,
we show the following useful lemma.

LemmaC.1. If a score sequence s ∈ ∪ki=1
{A,B}i yields admission

on the equilibrium path, then ps∗ ≥ 1/2.11 Additionally, if ps∗ > 1/2,
the single score s yields admission for s ∈ {A,B}.

Proof. If all score sequences starting with s yield admission,

then by the law of total probability, ps∗ ≥ 1

2
as desired.

Otherwise, the college rejects some score sequence starting in s
after some number of tests. We write T to denote the length of the

longest continuation of s that cannot result in rejection i.e.,

T = |s | +max{m ∈ N|uss̃ = 1,∀s̃ ∈ ∪mi=1
{A,B}i }

where |s | denotes the length of the score sequence s . If the set {m ∈

N|uss̃ = 1,∀s̃ ∈ ∪mi=1
{A,B}i } is empty, then T = |s |. After having

taken T tests, students with score sequences starting with s would
not take any further test, since if they stop, they are guaranteed

admissions, but if they continue they risk rejection. Therefore, in

equilibrium we have ps∗ ≥ 1/2.

The proof above gives us a necessary condition for s to yield

admission on the equilibrium path, that is, ps∗ ≥ 1/2.
12

Now we

11
In other words, s is obtained with positive probability in equilibrium.

12
This condition alone may not suffice to tell us whether or not s yields admission

in equilibrium. For example, if pBB∗ ≥ 1/2 (i.e. p ≥ α 2

α 2+ᾱ 2
), there may exist an

equilibrium in which only A and BBA yield admission. Hence, pBB∗ ≥ 1

2
alone is

not sufficient to derive that BB is admitted in equilibrium.
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Table 6: Distribution of Testing Outcomes with k Tests Available

Score\Type (1,H) (1,L) (2,H) (2,L)

A αϕp ᾱϕp̄ α ¯ϕp fH (A) ᾱ ¯ϕp̄ fL(A)

B ᾱϕp αϕp̄ ᾱ ¯ϕp fH (B) α ¯ϕp̄ fL(B)

AA∗ 0 0 α2 ¯ϕp ¯fH (A) ᾱ2 ¯ϕp̄ ¯fL(A)

AB∗ 0 0 αᾱ ¯ϕp ¯fH (A) αᾱ ¯ϕp̄ ¯fL(A)

BA∗ 0 0 αᾱ ¯ϕp ¯fH (B) αᾱ ¯ϕp̄ ¯fL(B)

BB∗ 0 0 ᾱ2 ¯ϕp ¯fH (B) α2 ¯ϕp̄ ¯fL(B)

Total ϕp ϕp̄ ¯ϕp ¯ϕp̄

investigate a special case of single scores, and characterize the

sufficient condition for s ∈ {A,B} to be admitted. We will show by

contradiction that s yields admission given ps∗ >
1

2
for some s ∈

{A,B}. If, otherwise, a length-one score sequence s yields rejection,
then we have the following two cases: (i) if the College rejects all

scores starting in s , then by the law of total probability, ps∗ ≤ 1

2
, a

contradiction; (ii) if the College admits students submitting scores

starting in s for some continuation, then all category 2 students take

the test more than once if their first score is s , and thusps = ps∗ >
1

2
,

a contradiction again. Therefore, as long as ps∗ >
1

2
, s ∈ {A,B}

yields admission. □

With this lemma in hand, we are now in position to discuss the

equilibrium outcomes when k tests are available. By Lemma C.1, a
single score A yields admission (i.e., uA = 1) if p > ᾱ and only if

p ≥ ᾱ (i.e., pA∗ =
pα

pα+p̄ᾱ ≥ 1

2
). A single score B yields admission

(i.e., uB = 1) if p > α and only if p ≥ α (i.e., pB∗ =
pᾱ

pᾱ+p̄α ≥ 1

2
).

Therefore, for a non-trivial admission outcome to depend only on

the first score, we have p ∈ [ᾱ ,α].
Now we characterize the condition for a non-first-score equi-

librium to exist. Suppose a single B yields admission, then pA∗ >
pB∗ ≥ 1

2
, and thus a single A also yields admission and all students

are admitted. Therefore, for an equilibrium admission outcome to

depend on more than one score, we must have that a single B yields

rejection, i.e., p ≤ α . Furthermore, for some subsequent score after

B to matter in the admission outcome, that is, to make some score se-

quence starting in B yield admission, we need
pᾱαk−1

pᾱαk−1+p̄α ᾱk−1
≥ 1

2
.

To see why, we discuss the following two cases:

(1) If either BA or BB gives admission, then Category 2 students

whose first score is B always take a second test, and thus

by Lemma C.1, max{pBA∗,pBB∗} = p ≥ 1

2
. Then we have

pᾱαk−1

pᾱαk−1+p̄α ᾱk−1
≥ p ≥ 1

2
as desired.

(2) If, otherwise, both BA and BB give rejection, then denote by

M the maximum length of a continuation of tests such that

every continuation of length ≤ M results in rejection, i.e.,

M = max{m ∈ N|uBs = 0,∀s ∈ ∪mi=1
{A,B}i }.

13
Observe that we have 1 ≤ M ≤ k − 2 if some score begin-

ning in B yields admission. Students who take tests no more

thanM+1 times with a first score of B are rejected. By defini-

tion, there exists s ∈ {A,B} such that Bs̃s gives admission for

some s̃ ∈ ∪Mi=1
{A,B}i . Thus fH (Bs̃) = fL(Bs̃) = 0, and thus

pBs̃s∗ ≥ 1

2
by Lemma C.1. LetG be the number ofA scores in

Bs̃s (Note that 0 ≤ G ≤ M + 1). We have
pᾱαk−1

pᾱαk−1+p̄α ᾱk−1
≥

pᾱαM+1

pᾱαM+1+p̄α ᾱM+1
≥ pBMs∗ =

pᾱM+2−GαG

pᾱM+2−GαG+p̄αM+2−G ᾱG ≥ 1

2
.

Therefore,
pᾱαk−1

pᾱαk−1+p̄α ᾱk−1
≥ 1

2
(i.e., p ≥ p∗k ≡ ᾱk−2

αk−2+ᾱk−2
) is a

necessary condition for some subsequent score after B to affect the

admission outcome.

To see why p ∈ [p∗k ,α] is also sufficient for a non-first-score equi-
librium to arise under “Report All”, define a partition {p∗n }

k
n=1

over

the range [p∗k ,α] in which p∗n =
ᾱn−2

αn−2+ᾱn−2
for all n = 1, · · · ,k .14 If

p ∈ [p∗n+1
,p∗n ], there is a non-first-score equilibrium in which the

College accepts students with first score A, and rejects all students

with first score B unless their sequence of scores is BA . . .A︸ ︷︷ ︸
n

. In

this equilibrium, Category 2 students take at least two tests if their

first score is B, and both score sequences starting with A and those

realizing BA . . .A︸ ︷︷ ︸
n

yield admission.

Similarly, we can derive the sufficient and necessary condition for

some subsequent score after A to matter in the admission outcome,

that is, p ∈ [ ᾱk
αk+ᾱk

, ᾱ]. In this case, students with a single score

are rejected.

Finally, we can study possible equilibrium outcomes if p ∈ (ᾱ ,α).
By Lemma C.1, if p > ᾱ (i.e., pA∗ >

1

2
), a single A yields admission;

and ifp < α (i.e.,pB∗ <
1

2
), a single B yields rejection.What remains

to be proved is that any score sequence consisting only of B’s leads
to rejection. Denote

MB = max{m ∈ N|us = 0,∀s ∈ ∪mi=1
{B}i }.

13
The maximum exists since the set {m ∈ N |uBs = 0, ∀s ∈ ∪mi=1

{A, B }i } is

nonempty (the College rejects both BA and BB) and compact (the number of scores

is an integer with the upper bound k − 1).

14
Note that p∗

1
= α , p∗

2
= 1

2
, · · · , p∗k ≡ ᾱ k−2

αk−2+ᾱ k−2
, and ∪k−1

n=1
[p∗n+1

, p∗n ] = [p∗k , α ].
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Note that we have 1 ≤ MB ≤ k by definition. To showMB = k ,

suppose by contradiction thatMB ≤ k − 1. By definition, students

with score sequence B . . . B︸ ︷︷ ︸
MB

are rejected and students with score

sequence B . . . B︸ ︷︷ ︸
MB+1

are admitted. Therefore Category 2 students who

have thus far only obtained B scores won’t stop until they take

MB + 1 tests. Therefore we have

pB . . . B︸ ︷︷ ︸
MB+1

=
ᾱM+1p

ᾱM+1p + αM+1p̄
<

ᾱMp

ᾱMp + αM p̄
= pB . . . B︸ ︷︷ ︸

MB

≤
1

2

,

a contradiction.

C.3 Comparisions between Positive and
Negative Predictive Value in the General
Case

As in the k = 2 case, we similarly find that in the first-score equi-

librium under “Report All”, the positive predictive value is strictly

higher, compared to the separating equilibrium under “Report Max”

— i.e. the admitted class has a higher proportion of High types.

Theorem 9. For any α ∈ (1/2, 1), the positive predictive value in
the first-score equilibrium under the “Report All” policy exceeds that
under the “Report Max” separating equilibrium.

Proof. The positive predictive value of “Report Max” is

αϕp + (1 − ᾱk ) ¯ϕp

αϕp + ᾱϕp̄ + (1 − ᾱk ) ¯ϕp + (1 − αk ) ¯ϕp̄
.

The positive predictive value of the first-score equilibrium under

“Report All" is
αp

αp+ᾱ p̄ . It is straightforward to verify that the first

term is strictly smaller than the second if α ∈ (1/2, 1). □

Similarly, as before, the negative predictive value is higher under

“Report Max”:

Theorem 10. For any α ∈ (1/2, 1), the negative predictive value
in the first-score equilibrium under the “Report All” policy is strictly
smaller than that of the “Report Max” separating equilibrium.

Proof. The negative predictive value of “Report Max” is

αϕp̄ + αk ¯ϕp̄

ᾱϕp + αϕp̄ + ᾱk ¯ϕp + αk ¯ϕp̄
.

The negative predictive value of the first-score equilibrium un-

der“Report All” is
p̄α

pᾱ+p̄α . It is straightforward to verify that the

first term is larger than the second for α ∈ (1/2, 1). □

15∪mi=1
{B }i = {B, BB, BBB, · · · , B . . . B︸   ︷︷   ︸

m

}.
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